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Optimal control under incomplete information, i.e. , under incomplete and 
inexact measurements of the state of the controlled plant, is of essential inter- 

est for practical control problems. In the case when the observer can modify, 

along with the control, also the measurement program., there arises various 

problems of the optimal choice of the control and of the observation process, 

one of which we consider in this paper. We show that under assumptions made 
on the characteristics of the control systems, Bellman’s method and the maxim- 
um principle method can be applied for solving the problem under investigation, 
allowing us to find in a number of cases an explicit form of the optimal control 

and observation procedure. We remark that for deterministic systems the problem 
of the optimal combination of control and observation has been examined in 

monographs [r, 21 in a formulation other than the one adopted here. 

1. let us denote the controlled motion of the plant being investigated by x (&and 
the variable accessible to measurement by y (t). Suppose that the vector x (&taking 

values in an Euclidean space E,, is a solution of the system of stochastic differential 
equations 

dx (t) =, [A (t)x (1) +B (t) u @)I dt + al (t) dEt (0 

x (0) = 5s ’ (O<:(T) (1.1) 

and that the vector y (t) E E, is given by the relations 

dy (t) = H (t) x (t) dt -I- Q (t) d& (t) (t>% y(o) = 0 (1.2) 

Here, Eqs. (1.1). (1.2) are to be understood in the sense of Ito p]. and the vectors 
encountered in them are to be considered as column-vectors. We always assume that 
the following constraints are fulfilled for the coefficients of Eqs. (l.l), (1.2). The 

independent Wiener processes Et (t) CZ E, and Es (t) E E, are normalized by the 
conditions 

El (0) = 0, m, (1) = 0, MC, (t) Et’ (t) = I& MEn (1) Es’ (t) = IInt 

where M stands for the mean, the prime is the sign for the transpose, 1, is the n - 
dimensional unit matrix_ The control vector u (2) E &,.The deterministic matrices 

A (t), B (t), o, (t), A (t). o (i) h ave bounded piecewise-continuous elements and, 

moreover, the matrices A (t), 6, (t) have dimension r8 X n,while the matrices 
B (t), H (t), d (t) have dimensions n X rzl,’ m X Iz, m X m, respectively. 
Finally, we take it that the matrix o (t)is nonsingular and that the random variable 

20, not dependent on Et (t), & (t) h as a Gaussian distribution with parameters 

m0 = Mxo, D, = M (xe - m,) (x0 - moY 
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where the matrix D,is positive definite. 
Since the moving coordinates of the phase vector z (t)are not accessible to direct 

measurement, the control u (t)at the instant t has to be chosen in the form of a func- 

tional depending on a measured realization y (s) over the interval 0 <s sg t. 
We describe the observation process. During the observation the matrix 11 (r), giving 

the composition of the measurements, and the matrix 6 (t),defining their accuracy, 

may vary (within the limits of the above-mentioned constraints) in such a way that under 
these variations the nonnegative-definite matrix 

I’ (t) = H’ (t) (a (t) Q’ (t))-’ H (t) (Odf G!T) (1.3) 

describes a set Wof nonnegative-definite deterministic matrices with bounded piece- 

wise-right-continuous elements, which is closed and bounded relative to the Euclidean 
norm. In formula (1.3), and everywhere subsequently, the symbol X-l denotes the 
matrix inverse to matrix X. Beyond requirement (1.3) we also take it that for any ele- 

ment 

there holds the equality 

v (t) E w (1.4) 

(1.5) 

In other words, on the basis of the definition of the matrix-valued function f (V)Fond- 
ition (1.5) signifies that the total duration of the observation process has been given. 

The appropriateness of defining the observation process by matrix (1.3), first noted in 

[4] for uncontrollable motions 5 (t),is clear from the fact that after the optimal control 
is chosen the performance criteria being considered become functions only of the vari- 
ance of the estimate of vector z (t);defined, precisely, by the matrix v (t). Note that 

for any preassigned nonnegative definite matrix IJ (t) there exist a matrix H (t) and a 

nonsingular matrix 5 (t), satisfying equality (1.3). 
Proble,m 1. To chose a control u (t)in the form of a functionakof y (s), 0 < 

< s < r,and a function 1/ (I),satisfying conditions (1.4), (1.5). so as to minimize the 
performance criterion 

T 

J (11, v) = M k’ (T) J% (T) + ] (5’ (s) L, (s) x (s) + u’ (s) L, (s) u (s)) ds] (1.6) 
0 

Here L,, L,, L, are given deterministic matrices of dimensions rr X n, n X n, 
n, X rzr respectively, with piecewise-continuous elements, where matrix L, is non- 
negative definite while the matrices L, andL,(s)(for all Cl& s< T) are positive 
definite. Thus, to solve Problem 1 it is necessary to find a control u (i!), optimal in 
the sense of performance criterion (1.6), in the form of a synthesizing function, and a 
deterministic measurement program. If B (1) E 0 (i.e., system (1.1) is uncontrolla- 
ble), then Problem 1 reduces to choosing an optimal measurement program, considered 

earlier in [4]. 
For any fixed observation method the problem of synthesizing a control u (t)pptimal 

in the sense of performance criterion (1.6). can be solved by means of Bellman’s meth- 
od and the Kalman-Bucy filter (for example, see [5]). Let us cite the results ([S]. pp. 

96-102) neededzubsequently. 
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For this purpose we denote by zI (t) and D (t) respectively, the conditional mean and 

the conditional variance matrix of process a! (1) under the condition that a realization 

of process y (s) has been measured on the interval 0 < s < f. Then [S], the function 

q (t) is a solution of the system of stochastic differential eauations 

& U) = IA (1) z1 (t) + B (t) u (t)] dt + D (t)8r’ (t) (6 (t) a’ (t))” X 
x ial/ (4 - H (0 xl 0) a 151 (0) = m, 

while the maMx 0 (t) is determined by the equalities 

D’ (t) = A (t) D (t) + D (t) A’ (t) - D*(t) v (t) D (f) -t- 61 (t) 6: (1) (I>*) 

D (0) = D@ (W 
The optimal control u,, (t) is 

uo 0) = - G1 ($1 B’ (0 g (0 xl(t) WV 

where the positive-definite matrix g (1) satisfies the equations 

r(t) = - A’ (0 g (9 - g (0 A (0 + g <Qp U)Lt-‘;(W’ (1) g (t) - Ls (0 

g (T) = L, (M 
Finally, 

JdV) = ~~,J(~,~)=J(~,V)=no'g(O)mO+ 

+ T4W') + jTr 14s) V(+Wg(s) + b(s) D(s)] ds (i.10). 
0 

Here and subsequently the symbol ‘I’r L1 denotes the trace of matrix &.Thus, to solve 
Problem 1 it remains to minimize J,( V)over functions V (t), satisfying requirements 

(1.4). (1.5). 

2. Let us transform the right-hand side of formula (1.10). First of all, with due 

regard to ‘l+ 71, w have 

s 1 A (8) D (s) + D (s) A”(s) - f~ (s) +a1 (5) 0,’ WI g (4 ds = 
0 

= i D(s)V(s)D(s)g(s)ds (24 
0 

Further. bv integrating by parts, we obtain in view of (1.9). 

-i D'(s)g(s)ds =--D(~~g~T)f~(O)g(o~+~D(.~g(s~*= 
0 0 

T 

--~~~)L,+~og(O)+~~(s)g(s)ds (2*2) 

For any square matrices A,, &of like dimension, 

TrAl A,= Tr A,Al (2.3) 
therefore, by virtue of (1. lo), (2.1). (2.2). 

J~(V~=~~~~O~m,+T~D,g(O~+~T~~~(J)~(s)+ 

+ Ls (s) D @I+ (A (s) D (s) + D (s) .A’ (J):+ b, (s) a,’ (s)) g (s) I ds 



562 V. B. Kolmanovskii 

Finally, having substituted here in the place of the derivative g’ (t) its expression given 
by the right-hand side of formula (1.9). we are convinced, using (2.3), that 

J1 (V = n’g (0) m. + Tr Dog (0) + 

+ i Tr ia, (~1~1’ (4 + D (4 g 0 1 B (~1 L;’ (8 B’ (s) I g (s) ds 
0 

But in the last relation for J1 (v) on the basis of (1.9), only the quantity 

J, (V) = ‘r Tr D (s) g (s) B (s) L;’ (s) B’ (s) g (s) ds 
6 

(2.4) 

depends upon the choice of the function V (4) 
Consequently, to solve Problem 1. which has been reduced to the determination of 

a matrix V(L), subject to conditions (1.4), (1.5)and minimizing functional J, (V), we 

may apply the usual methods of optimal control. In the next section we find the expl- 

icit form of the optimal observation method for certain equations of form (1. l), (1.2) 

with the aid of the maximum principle(see (1.8)). 

3. Suppose that the on*dimensional Eqs.(l.l), (~3 for the scalar variables 2 (t), 
y (t) have the form 

x’ (0 = a (t) 2 (t) + b (t) u (t) (O<KT) (3.1) 

dY (t) = h (t) z (t) dt + ad&, (t) (3.2) 

with a constant coefficient o # 0 and with a function’)t (t), equal at any instant t 

either to zero or to a constanth # O.The set Wconsists of the numbers 0 and hso-s,. 

while performance criterion (1.6) is 

.\I 
t 
WjT) + - Ix2 (s) &s(s) +ua (s) Z,(s)] ds) 

i 

k’hen these requirements are satisfied ihere holds 

Theorem 3.1. If P (t : b (t) = 0 ) = 0 (P (6) is the Lebesgue measure on 
the direct set 6) and if the function a (t) < Ofor all t E [O, T], then the optimal obs- 
ervation law I’,, (t), solving Problem 1 for system (3.1), (3.2), is determined by the 

equali ties 
h2a~ (0 < t < To) 

vo(t) ={ 0 (To<Z<T) 

Proof. By virtue of(l.7), (3. l), (3.2) the variance D(t) of the estimate satisfies 
the equation 

W(l) = 20(f) D(l) - 02(t) V(t) (0 < t Q T) (3.3) 

Since D(0) = D,> U, D(t) > Ufor any finite 1 and, hence, there exists the function 
~(1) = D-l(f), defined with due regard to (3.3) for 0 < t < T by the equalities 

2’(t) = -2a(t) z(f) + r(t), z (0) = Do-’ 

Thus, to prove the theor em it is enough to establish, on the basis of (2.4), that V,(r) 
minimizes the functional 
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J* (Jr) = i; g2 (3) b2 (s) da 

; i, (s) la(s) 

under the supplementary constraints’(1.4), 
applying the maximum principle ([S], pp. 

1’0 (t) = 
&-2, 

0 
1 

(1.5). (3.3). It is not difficult to show, by 
75-79), that 

if Q(l)+c>O 

if $(t)+c<O 
(3.4) 

where the constant c is chosen so as to satisfy requirement (1.5) and the adjoint varia- 
ble $(1), is given by the formulas 

VW = Zo(t)lj(t) - (2’‘(t)g(t)b(t))” r,-l(t) (0 < t < T) 

MT) = 0 (3.5) 

and equals 

q(L) = j z* (s)Ia(s) exp tS 
(g (8) b (s))~ 2a (~1) dsl j ds 

I) 
(3.6) 

Indeed, we set up the Hamiltonian ([6]. p. 76) 

~,L-l(t)g2(t)b2(t)Zn1(t) + Q(t)(--2a(t)z(t) + v(t)) + ~~,jt)v(t)h-w 

where the constant Q. < 0 by virtue of the transversality condition q(T) = O.Further, 

the function $:~(l)~satisfying the equation q2*(t)= 0 is constant Hence we should take 
V. < 0, because when q. = 0 the identity ‘Ic: (t) E 0 is valid, while the constant qi;? (t) 
is nonzero since on the basis of the maximum principle the vector(qo, q(t), +2(l))is non- 
trivial. However, for any choice of the constant J:2(t) the equality 

No* W) 9 +2(t)) = (0, 0, d‘*(L)) 

contradicts requirement (1.5) since by virtue of the maximum principle the optimal 
observation law is determined by formulas (3.4) with c = ~l:,(t)i~-~u~. It still remains to 

note that the Hamiltonian has been defined to within a constant factor. Therefore, we 

can set q. = - i.From equality (3.6) we see that q(t) > 0. Consequently, on the basis 
of (3.5) and of the hypotheses of Theorem 3.1, the derivative Q’(l) < 0, i. e., the 

function $(tj decreases monotonically. From this and from (3.4) ensues the validity 
of the assertion of Theorem 3.1. 

Corollary 3.1. Let us assume that in Eqs. (1. l), (1.2) the matrix L? (/). (I ;5 
< t ,( T , is nonsingular, the matrix A (t) = - ~‘1,~ (the constant 1’ > ii), oy (1) = 
= (1, and the constant coefficient Q (t) = Q. The function11 (t)takes two values: it 

equals either zero or a constant matrix II.The set Jf’consists of the null matrix and the 
matrix H, = ii’(&)-‘11. By q(t) we denote a function equal to unity if an observa- 

tion is made at the instant t and to zero if an observation is not made. We show that 

the optimal observation law is 

vcl (t) = H1 Vo (0 
where 

‘PO PI = [ 
1, O<t<To 

0, Todt<T (3.7) 

To do this it suffices to prove that among all the functions V (t) = II1 cp (t) the mat- 

rix V, (1) minimizes functional (2.4) under the supplementary constraints (1.5), (2.1) 
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which, under the assumptions made on the coefficients, 

o’(t) = - 2r.&,D (t) - D(t) v (t) D (t), 

T 

are written in the form 

D (0) - Do 

s q (8) (38 - To, To-0 (3.8) 

Note that by virtue of the lkobi identity (F], p.420) the determinant det D (t) of 
matrix D (t) satisfies the relation 

detD(f)=detD.erp{ETr(-27~.-V(s)D(r))drj 
i 

from which, with due regard to the nonsingularity of D, ensues the nonsingularity of 

matrix D (t). Consequently, the inverse matrix z (t) = D-1 (1),exists and is defined, 
by virtue of (3.8). by the equations 

2’ (t) =f %I,2 (0 + v (0, z(O)=a,=D;' (3.9) 

In correspondence with FXp. 283) we can find a nonsingular matrixqQ,which si mult- 
aneously takes a0 into the unit matrix and the matrix HI into a diagonal matrix Ha.We 

denote the diagonal elements of matrix H, by the symbols hi, i = I,,., , n. Then, 
paying further heed to ($3). (3.9). for fyctional(2.4) we obtain the expression 

J, (v> = i or [ zaPrnt + ,S eavfe(W’ (a) d~1-l a (t) dt = 

= j ~~ [ Q-~Q~,Q~ (~')-l P'nn' + / F++-@)Q-~Qv (SJ Q’ (Q’)-1 ds]-1 a(t) dt = 
0 

T 

= Tr eayrnf 
s [ +fr 

enrn("')H9a,(s) dsj4 Qa(t)Q’dt (3.10) 

where the positivetdefinite mati: 

a W = g (0 B U) L;’ (0 B’ (0 g(t) 

Hence it follows that for 0 < t < 2' all the functions p1 (t), being the diagonal 
elements of a positive-definite matrix Q u (t) Q', are positive. Furthermore, on the 
basis of (3. lo), using the diagonality of the matrix 

t 
pnt + 

s e”‘~(“‘)H,cp (a) da 
l 

we have 

minv J, (V) = min, ~$IPl(f)[E” +Se”“-‘)~,P(s)da]-‘d~r 
0 

2 FI min, j pt (t) [ewL f j Nr-@)h,cp (s) ds]-’ dt (3.11) 
I 0 

I 

where the equality sign holds here only in the case when all the terms in the right- 
hand side of (3.11) achieve a minimum for one and the same choice of the function 
cp (2). However, any of the terms indicated can be represented in the form 
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T 

s PC (s) f? (4 ds (bi,. ..,a) 
0 

where 

ft’ (0 = Wfc (0 + hta, (t) (O<rdT) 

fi (0) = 1 

565 

(3.12) 

Thus, on the basis of Theorem 3.1 and of the inequalities fii (1) > 0, f = 1,. . . , ?Z 
noted above, the function ‘p. (t) minimizes the whole expression (3.12) and consequ- 

ently also the functional (2.4). 

Note 3.1. By a verbatim repetition of the arguments applied in the proof of 

Corollary 3.1 we convince ourselves that its assertion remains in force if all the requi- 

rements of Corollary 3.1 are satisfied, but the matrix A (t) =- y (t) 1, with a non- 

negative function y (t). 

Corollary 3. 2. Let us assume that in Eqs. (1.1). (1.2) the matrix A (t) = A 
is constant and nonpositive definite, a1 (t) = 0, the function. H (t) equals either zero 

or the constant matrix vI H, the constant coefficient o (t) = ‘yso and moreover the 
matrices H and cr are orthogonal (i. e., H’H = au’ = Iti), det B (t) # 0 and the 

numbers ~1 # 0. Further, let the a p r i or i vari ante D ,J = $,, 0 > 0. Then, the 
optimal observation law isv,, (t) = yll~s-*v,, (t), h w ere the function ‘po (t) is @eterm- 
ined by equality (3.7). 

The proof of this corollary is similar to the proof of Corollary 3.1. Namely, by Q 
we denote an orthogonal matrix taking A to diagonal form with elements in the diago- 

nal of the reduced matrix.u, < 0. Then the matrixQ exp (at).Q).also is diagonal 
with diagonal elements equal to exp (ai t).Analogous to (3. lo), (3.11) we have 

By arguing further just as in the proof of Corollary 3.1, we convince ourselves of the 
validity of Corollary 3.2. 

4. Let us now study the form of the optimal observation method for systems (3. l), 

(3.2) without assuming the negativity of a (l)for a performance criterion (1.6) of 

the form 

M[I,r’(T)+Tu’(s)Is(s)dS] 9 4>O, W)>O (44 

0 

Theorem 4.1. Assume that the function b (t) and the coefficients of Eq. (3.2) 
satisfy the requirements of Theorem 3.1, the functions Q (t), b (t), 1, (t)are different- 
iable. and a’(t) < 0, Is’(t) < 0, b (t) b’(t) > 0. Then we can find a number tr < 

< T - To, such that the optimal observation law is v, (t) = h%‘s cp (i, t&where 
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Proof. On the basis of the maximum principle the optimal observation law is 
determined by formulas (3.4) - (3.6). We now assume the contrary, i.e., we assume 

that there exist several intervals, nonabutting on each other, on the interval [0, TJwhere 

the function v,(t), determined by equalities (3.4) is nonzero. We denote the i- th of the 

intervals indicated (the observations intervals) by the symbol [ti, E,). It is clear that by 
virtue of the assumptions made we can find an i, for which 81 < li+l. Let us investigate 
the behavior of the adjoint variable 9(t) (see formulas (3.5), (3.6)) on the interval 

[si, ti+l]. First of all we note that since V,,(t) > 0 for t E (ti, si)and ‘v,,(f) = 0 on the 
interval Si < t < ti+lwith due regard to (3.4) the derivative 

$.(Si) < 0 (4.3) 

Let us find an equation satisfied by the quantity r(t) = q (t) on the interval si < t 

< h+l* For this we differentiate with respect to t both sides of relation (3.5). Keep- 

ing in mind formulas (3.4), (1. 9), (4.1) and the fact that V,(t) = 0 for si <<f.< li+l,we 
obtain 

r*(t) - 2a (t) r (t) = r1 (t) = 2a*(t) q(t) $ 13. (1) la-z(t) g2 (1) b” (1) z-2 (t) - 
- 20 (t) L’(t) la-’ (t) g*(t) z-2 (t) - 2b’ (t) g3 (t) 13-z (t) Z-2 (I) (4.4) 

On the basis of Eq. (1.9). which under the hypotheses of Theorem 4.1 has the form 

g’(t) = -2a(t)g(t) + k?(t)bY%-’ (Gl t>O 

g(T) = 1, >0 

the function g(t), equal to 

g(r)=[+exp (2jn(r)i)+Ji2(l)l.‘(a).xp(2i.(rlldri)dr]-l (45) 
8 

is positive. Hence from the nonnegativity of the adjoint variable (3.6) and from the 
requirements of Theorem 4.1 there follows the validity of the inequality 

Q(t) < 0, si \ 1 Q t*+l 

Therefore, by virtue of relations (4.3), (4.4) for si < 1 < t(+l 

r(t)=$,“(8*)‘exp(2 id(s)ds)+ j eXp (2SQ(.~,)drl)h(F)dS<O 

#i ‘i I 

In other words, the function *(c)decreases monotonically on the interval [si, ~,+,].How- 
ever, this latter is impossible since on the basis of (3.4) it contradicts the assumption 

made above that r,(f) > 0 for Ii+i < t < si+j, f = 0, I and v,(f) = 0 for t E [si, tiF1).The 
contradiction obtained proves Theorem 4.1. 

With the aid of Theorem 4.1 the problem of finding the optimal observation law which 
minimizes the functional (X. 4) corresponding to (4.1). having the form 

Tn(.)g~(,~)ba(~)b-*(.)dS =J* 

0 

(4.6) 

can be reduced to the minimization of a scalar function of the variable t,. For this we 

should solve Eq. (3.4), having set (see formula (4.2)) v(l) = h%-G~$t, t,),and then we 

should substitute this solution of Eq. (3.4) and the function (4.5) into integral (4.6) 

which, after the substitution indicated, will be a function of the one variable 1,. Let us 

illustrate \&at we have said by examples. 
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Example 4.1. Let the coefficients of Eq. (3.2) satisfy the requirements of 
Theorem 3.1, let the quantities a(t) = a, b(l) I: b # 0 be constants, and let the funct- 
ion /&) s 1, in functional (4.1). moreover, let 

PI, = 20 > 0 (4.7) 

We study the optimal observation law under these constraints. From (4.5), (4.7) it 
follows that g(t) E Z,.Therefore. by substituting into (4.6) the solution of Eq. (3.3) 
withF(t) = h%-*~(t, t&t is not difficult to get that 

1,-Vs = &-DO (ezafn - i) - In g + In (elatl+lLaTo + 2ciD0-~ - e2”l) + 

+ p= - e*(tI+To)) [ &Do’1 + e la(h+To) _ pa -1 I (4.6) 

We set 

and find that value &,, for which the right-hand side of relation (4.8) takes a minimal 
value. We equate the derivative Js with respect to X to zero. After simple manipu- 
lations we have 

Aa (esnTo - 1) + 2&Do-i (1 + ewT*) - 2aDo-le2aT = 0 

Hence, by investigating the sign of the derivative d/, 1 &we convince ourselves that 

~0 (,saTe _ i) = _ aDo- (i + ewT’) + [ a2Do-a (1 + e2”Te)‘J sr 2 (e2aTn - 1) aDemleZOT 1“’ (4.9) 

This formula defines the clear dependency of the starting time of the observations on 
the system parameters. In particular, from (4.9) we see that for the values 5 ( i the 
observation starting time t, = 0 and furthermore, lim,,, t, = Z’- TO. 

E xa m ple 4. 2. Let the coefficients of Eq. (3.2) satisfy the requirements of Theor- 
em 3.1, let the constant quantities a(t) = a > 0, Z,(t) s 1, b(t) = b # 0. Let us show 

that then for all a > 0, satisfying the inequalities 

2a < b=, 2ae-mT > ba (1 - e-zaT)a (4.10) 

which are fulfilled for any sufficiently small values of o, the observation starting time 

t1 = 0. We estimate the derivative v (t) of the adjoint variable (3.6). In view of (3.6) 
we have 

T 

v (t) = 2ab%2”f 
s 

P’z-’ (s) gP (s) ds - gz (t) z-’ (t) ba = 

1 
T 

= 2nbzemL ’ 
J 

e2aJ (2 (8) ,*‘]-2g~ (8) ds - g’ (L) 2-O (t) b’ (4.11) 

I 

we now note that on the basis of (3.3) the function s(;)@,equal to 

does not decrease monotonically for any observation law. From this and from (4.11) 
ensues the inequality 
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e+“g (0) ds - 

I 

(4.12) 

Into the right-hand side of estimate (4.12) we substitute in the place of the function 
I(t) :its eXpreSSiOn in (4.5). Integrating with due regard to (4. lo), we get 

3+)‘(f) < s-‘(z) b’ (g - 1) [- e-‘aT + g- (1 - 6-aaTy] < 0 

In other words the function rp(t)decreases monotonically, i.e., in view of (3.4) the ob- 
servation starting time t, = 0. We remark that, as was shown in [4], for uncontrollable 
motions the start of the optimal observation process 1, = T - To for any o > O.Thus. 

the introduction of the control leads to a displacement of the observation interval. 

Note 4.1. Similarly to Corollary 3.1 we can formulate simple generalizations of 
Theorem 4.1 to the multidimensional case. We cite one of them as an example. In 
relations(1.1). (1.2) let the matrices A (t) = I’~I”, D, = Yz~, (VX, YZ are posi- 

tive constants), the constant orthogonal matrix) R Z B (t), let the coefficient 
H (t), U (t) satisfy the requirements of Corollary 3.1, while in the performance cri- 
terion (1.6) let the matrices L, = I,, L, E 0, L, = I,,. Then there exists only 

one observation interval. The validity of this fact is established completely analogously 
to Corollary 3.1 with the use of Theorem 4.1. 

The author thanks F. L. Chemous‘ko for his constant attention to the work. 
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